

01/09/15

What do we want to learn about supernovae? What is left behind? What explodes? - progenitors, evolution - remnants towards explosion compact remnants • How does it explode? - chemical enrichment - explosion mechanisms Other uses of the Where does it explosions explode? - light beacons distance indicators environment local and global - chemical factories - feedback

Supernova Types

Thermonuclear SNe

- Progenitor stars have small mass (<8M_☉)
- highly developed stars (white dwarfs)
- Explosive C und O burning
- Binary star systems
- Complete destruction

Core collapse SNe

- Progenitor stars have large mass (>8M_☉)
- large envelope (Fusion still ongoing)
- Burning because of the high density and compression
- Single stars (double stars for SNe lb/c)
- Neutron star as remnant

What do we know about Type Ia supernovae?

- Where does it explode?
 - environment
 - (local and global)
 - some with CSM (?)
 - all galaxy morphologies
 - dependencies on host
 - galaxies?
 - feedback
 - little

- Other uses of the explosions
 - light beacons
 - little use as background source
 - distance indicators
 ha!
 - chemical factories
 - no significant dust

Possible progenitors

Single Degenerate

- 'life' star
- young systems (>10⁸ yr)
- 'long' mass transfer
- · 'messy' environment
 - expect hydrogen, helium, oxygen, dust
- companion left behind

Double Degenerate

- 2 'dead' stars
 - Old systems (>10⁹ yr)
- mergers
- 'clean' environment
- no companion remnant

Historical importance of supernovae

- Historical supernova observations in Asia (China, Korea)
 - Interpreted (together with comets) as heavenly signs (typically as bad omens)
- Appeared in the part of the fixed stars

 In contradiction of the Ptolemaic world view with the heavenly spheres

Historical importance of supernovae

- SN1572 observed by Tycho Brahe
 - De stella nova
 - No measurable parallax → outside of the solar system
- SN1604 Kepler's Supernova
- Observations of S Andromeda (SN1885B) in the Andromeda galaxy
 - Lundmark (1925) proposed that Andromeda is outside our Milky Way

Einstein zur Kosmologischen Konstante

Wir geben hierfür zunächst einen Weg an, der an sich nicht beansprucht, ernst genommen zu werden; er dient nur dazu, das Folgende besser hervortreten zu lassen.

Im folgenden führe ich den Leser auf dem von mir selbst zurückgelegten, etwas indirekten und holperigen Wege, weil ich nur so hoffen kann, daß er dem Endergebnis Interesse entgegenbringe. Ich komme nämlich zu der Meinung, daß die von mir bisher vertretenen

[Die Kosmologische Konstante] haben wir nur nötig, um eine quasi-statische Verteilung der Materie zu ermöglichen, wie es der Tatsache der kleinen Sterngeschwindigkeiten entspricht.

zennen und ormen variabet, iase sich aber im großen durch einen sphärischen Raum approximieren. Jedenfalls ist diese Auffassung logisch widerspruchsfrei und vom Standpunkte der allgemeinen Relativitätstheorie die naheliegendste; ob sie, vom Standpunkt des heutigen astronomischen Wissens aus betrachtet, haltbar ist, soll hier nicht untersucht werden. Um zu dieser widerspruchsfreien Auffassung zu gelangen, mußten wir allerdings eine neue, durch unser tatsächliches Wissen von der Gravitation nicht gerechtfertigte Erweiterung der Feldgleichungen der Gravitation einführen.

Einstein (1917)

Constant ω firmly established				
Nsn	Ω _M (flat)	<i>w</i> (constant, flat)	Light curve fitter	Reference
115	$0.263^{+0.042}_{-0.042}{}^{+0.032}_{-0.032}$	$-1.023^{+0.090}_{-0.090}{}^{+0.054}_{-0.090}{}^{+0.054}_{-0.054}$	SALT	Astier et al. 2006
162	$0.267^{+0.028}_{-0.018}$	$-1.069^{+0.091}_{-0.083}{}^{+0.13}_{-0.13}$	MLCS2k2	Wood-Vasey et al. 2007
178	$0.288^{+0.029}_{-0.019}$	$-0.958^{+0.088}_{-0.090}{}^{+0.13}_{-0.13}$	SALT2	
288	$0.307^{+0.019}_{-0.019}{}^{+0.023}_{-0.023}$	$-0.76^{+0.07}_{-0.07}{}^{+0.11}_{-0.11}$	MLCS2k2	Kessler et al. 2009
288	$0.265\substack{+0.016}_{-0.016}\substack{+0.025}_{-0.025}$	$-0.96^{+0.06}_{-0.06}{}^{+0.13}_{-0.13}$	SALT2	
557	$0.279_{-0.016}^{+0.017}$	$-0.997^{+0.050}_{-0.054}{}^{+0.077}_{-0.082}$	SALT2	Amanullah et al. 2010
472		$-0.91^{+016\ \pm 0.07}_{-0.20\ -0.14}$	SiFTO/SALT2	Conley et al. 2011
472	0.269 ± 0.015	$-1.061^{+0.069}_{-0.068}$	SALT2	Sullivan et al. 2011
580	0.271±0.014	$-1.013^{+0.077}_{-0.073}$	SALT2	Suzuki et al. 2011
740	0.295±0.034	-1.018±0.057 CMB -1.027±0.055 CMB+BAO	SALT2	Betoule et al. 2014

Systematic uncertainties Current questions – calibration – reddening and absorption

- detection
 - through colours or spectroscopic indicators
- correction
 - knowledge of absorption law
- light curve fitting
- selection bias
 - sampling of different populations
- gravitational lensing
- brightness evolution

What next?

Already in hand

- ->1000 SNe Ia for cosmology
- constant ω determined to 5%
- accuracy dominated by systematic effects

Missing

- good data at z>1
 - · light curves and spectra
- good infrared data at z>0.5
 - cover the restframe B and V filters
 - move towards longer wavelengths to reduce absorption effects

Supernova Cosmology – do we need more?

Test for variable ω

- required accuracy ~2% in *individual* distances
- can SNe Ia provide this?
 - can the systematics be reduced to this level?
 - homogeneous photometry?
 - further parameters (e.g. host galaxy metalicity)
 - handle >100000 SNe la per year?

Euclid

- SNe la with IR light curves (deep fields)
 - \rightarrow restframe I (z<1.2), J (z<0.8) and H (z<0.4)
- several thousand SNe to be discovered