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Galaxy Evolution- Cosmology, gas, stars

We now understand that galaxy growth and the develop of large
scale structure of the Universe are intimately tied together, but
we don't understand how. Environment i1s important.

Internal processes also shape galaxies, we know some of them,
but do not understand all, and do not know how they interact or
which are most important.

Understanding the physics of gas — heating, cooling, dissipation
— 1s the next frontier of galaxy evolution. Over-cooling persists
in models.

Without understanding how stars form, understanding galaxies 1s
impossible.



Cosmological Perspective

Since the late 1960s, we have made substantial progress in physics.
We now have:

A standard model for particle physics

A standard model for cosmology with tightly constrained parameters

A solid frame work for understanding the growth of structure —
ACDM

We are here to understand the non-linear growth of
structure and how the baryons follow this growth.
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Cosmological Parameters

From quark soup to nuclei and atoms to
galaxies and large-scale structure

Flat, accelerating Universe

Atoms, exotic dark matter & dark energy

Consistent with inflation
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Universe is full o glxies

F
-
L Y L

HST - WFPC2

L e

Hubble Deep Field

PRC96-01a - ST Scl OPO - January 15, 1996 - R. Williams (ST Scl), NASA

So how to we get from inhomogeneities in the early universe to
galaxies? This 1s the central question of galaxy formation and
evolution as a branch of astrophysics.



Why is this perspective relevant?

This non-linear growth 1s simply driven by gravity

Further growth can be understood as other processes trying to regulate the
collapse of structures through gravity:

*cold accretion/cooling of halo gas (instabilities important?)
*disk 1nstabilities and clumps

*star formation

*oeneration of radiative and mechanical energy from AGN ....

Via the virial theorem, about half, perhaps more, of this gravitational energy
is feeding a turbulent cascade (random motions) ...



Galaxies in Pieces - Standard Model

Dark matter distribution on
100s kpc scale.
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Galaxy evolution directly tied to cosmology
& DM

— Agertz, Teyssier & Moore 2009
z=3 .

80 pc resolution

Accretion shocks

Ram-pressure

stripped material
Rvir - 50 kpC




Galactic and Extra-Galactic Cycles

Big bang cooling to nucleosynthesis Non-baryonic matter (g gona

First objects and galaxies form
Reionization Reionization

Cosmic web forms through gravitational infall
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l Rapid Growth
of SMBHs

Pop Il stars

Primordial BHs
First Galaxy Sized Clumps

Enrichment
of IGM

Intergalactic Medium

Infall and outflow into and out of halos Gas accretion on to halos
Cooling within halos
Dissipation of_‘m mom.
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Outflows and fountains

Mergers and interactions

Ram pressure stripping

Complex cycle of cooling and heating

Interstellar Medium

controls the ISM

Galaxies become stellar dominated

Cooling
Turbulent
dissipation
Dynamicalither
mal instabilities

Generates a turbulent dynamic
medium in rough equilibrium
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Complex physics

Stars
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The Path to Morphology
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weak feedback

low star-formation efficiency
formed relatively recently
gas accretion/minor mergers

Physm:ol Processes

S P heroids: , Galaxy Morphologv

low angular momentum
strong AGN/SB feedback

high star-formation efficiency
formed many Gyrs ago
major mergers



Galaxy evolution directly tied to cosmology
& DM
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Why do model galaxies overcool?

E >E
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in astrophysical plasmas, while in models, E 1S

hermal

generally dominate unless there 1s a lot of large scale forcing ...
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Turbulent compression, rarefaction, and mixing 1s what makes the
ISM multiphase ... dynamics and phases are inextricably coupled.



Constituent

Observable

Diagnhostic

Relativistic Plasma

Radio continuum
X-ray continuum

Magnetic field, aging of electrons, relativistic or
thermal pressure, jet collimation
star-formation rate, number of X-ray binaries

Hot ionized gas
T~10"to 108 K
log n_~-3to-1cm?

X-ray continuum, emission and
absorption lines
Radio depolarization

Thermal pressures, metal abundances, density,
mass, cooling rate, viscosity, turbulence, outflow
rate

Warm ionized gas
T~10*to 10° K
log n_~-1to 3 cm™

UV absorption lines
Optical emission lines
Radio recombination lines
Far-IR emission lines

Temperature, shock heating or photoionization rate,
density, mass, turbulence, dynamics, metallicity,
filling factor, pressure, outflow rate, cooling rate

Warm neutral gas
T~4-8 x 10° K
log n_~0to 2 cm”

Optical em/abs lines

HI emission and absorption
Mid-IR H-H lines

Far-IR lines of neutral species

Filling factor, temperature, column densities, cooling
rate, pressures,masses, etc.

Cold neutral gas
T~102K
logn ~-1to0 cm?®

HI emission and absorption

Filling factor, temperatures, column densities,
cooling rate, pressure, masses, etc.

Warm molecular gas
T~0.5-2x 10° K
log n_~1to 4 cm?

Mid-IR H-H lines
High order molecular lines of
neutral and ionized species

Filling factor, temperatures, column densities,
cooling rate, pressure, masses, etc.

Cold molecular gas/dust
T<10?K
log n_ >4 cm?®

Molecular lines
Infrared dust continuum
Mid-infrared features

Heating and cooling rates, dynamics, turbulence,
masses, densities, temperature, pressure, cosmic
ray heating rate, interstellar chemistry, etc

Stars

UV/optical/near-infrared
continuum

Mass, dynamics, star-formation history, metallicity,
energy injection rate, mass return rate, etc.




Galaxy growth is inefficient
AGN + SF + accretion:

Turbulent pressure, cosmic ray pressure, B-field pressure, radiation pressure,
ionization, shocks, gravitational instabilities ....
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Galaxy formation 1s mnefficient ... most baryons not in galaxy
proper ... are most of the baryons 1n the halos? This 1s often

called the missing baryons problem.
Behroozi et al. (2012)



log M, yr-! Mpc-3

-3

“star formation history”

Z

t (Gyr)

10 543 2 1 0.6 0.4
_ HH -
2 HiH > 0.06 L;_, i
[ me i HH 1
) FE-(§] .
| me = -

= o i
L :
B 1 ] ] l 1 | | I 1 | 1 I ] 1 1 I 1 | | I ] ] I:
0 2 4 6 8 10

27

26

25

e-OdN [-S WD s8as FO|



What drives the time evolution of the
mass growth?
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Weinmann et al. (2011)

Why doesn't the specific growth rate follow the specific accretion rate of
the gas? Too simple as growth rates are mass dependent.

Outflows and feedback?

Angular momentum?

Accretion rate over-estimated (over-cooling)?

Weinmann et al. (2011)



Disk formation - clumpy disks at high
redshift

82+ 7081+ i 4245+

Elmegreen & Elmegreen (2005)

Galaxies at high redshift are increasingly dominated by their gas.
Locally, 10%, about 10 Gyrs ago, 50% of galaxy mass 1s molecular.



Need for (Self-)regulation

1 D_1 E r 1 1 L I 1 L T '! 1 T I 1 T I L
® Cole et al. (2001) Flatness of mass function
10-2 8 Huang et al. (2003) L Wide range of ages
Wide range of stellar densities
— d(gal) < P(halo) at low mass
| I
g 10-3F
= -
T
S 10|
= 0 : / Steepness of mass function
- ! Old, red, & dead
L ! ! ®(gal) < ®(halo) at high mass
& 10°9F Mg, Mg, relation
=/
10-8 J 5 Hypothesize:
i | 1 i § [ | i 1 i | 1 i | 1 1 | [l I % E 1) quenChing (high-Z)
_o8 _2g _9a _99 _90 2) maintenance (low-z)

MH — 5|GC§|1|:}h

Nonetheless, need some self-regulation of BHs for exponential cut-off
Benson et al. (2003)



Influence of AGN
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Underlying Mechanisms for AGN Feedback

Disk Winds

Radiatively driven

Hydromagnetic
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Physics of Winds

Outflows driven by the collective thermalization of stellar winds and
supernova
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Mass dependent

We have discussed the efficiency of outflows, but the need for a
catastrophic phase of outflow or inhibition depends of mass.

dM./dt /M, (Gyr-?)
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But mass return is ~20-40% for old populations ... and cooling time is <t _ ....
internal velocity dispersions are not extreme ... 10s km s™
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Escaping Wind in M82

Region of spatially
coincident X-ray
and H-alpha emission

Characteristics suggest fast

shock of 800 km s! being :
driven 1in an ambient halo g
cloud. V. >V ..
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Lehnert, Heckman, & Weaver (1999)



Near-IR and Mid-IR Molecular emission
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Warm H_, PAHs, and H-alpha trace the same gas

-extends about 3 kpc above the plane
-likely to be shock heated — similar to the optical emission line gas

-authors favor entrainment and not significant energetically
Veilleux et al. (2009)



Outstanding Questions

Why is galaxy formation and evolution so inefficient? Where are most of the
baryons? They are not in galaxies ... that we know. Are they in the halos?

What regulates gas accretion, the star-formation rate and distribution, the outflow
rate of mass, energy, and momentum?

What is the relative rate of growth due to mergers, accretion of gas from the cosmic
web, and cooling of gas in the halo itself? How does this depend on halo mass?

What is the relation between the growth of structure and the growth of galaxies?
How does the relative location of galaxies — in nodes, walls, streams, voids — affect
their growth rates, morphologies, star formation histories, etc?

How do AGN regulate the growth of galaxies, especially massive galaxies?

How important are outflows generally in regulating the galactic gas cycle? What are
the energy sources regulating star formation and outflows? Cosmic rays, radiation

pressure, mechanical energy, photo-ionization/photo-dissociations?

What creates and destroys angular momentum in galaxies?
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